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1. SUMMARY OF PAST RESEARCH

In the first year of funding our research focused on classification tasks under uncertainty, with
special emphasis on propagating beliefs in a system containing a mixture of categorical and pro-
babilistic relationships. Previously available techniques were able to handle taxonomic trees,
where the main relationship is ISA -- i.e., class membership. The knowledge involved in object
recognition contains non-binary relationships (e.g., IN-BETWEEN) arranged in non-
decomposable structures. The difficulties encountered stem from the incompleteness of the
model. In other words, we normally have information about the relationship between a variable
and each of its neighbors but not between a variable and all of its neighbors taken together. This
precludes the construction of a complete Bayesian model. To overcome this difficulty, we have
developed a new formulation of the Dempster-Shafer theory in terms of a static constraint-
networks (representing stable knowledge) bombarded by randomly fluctuating constraints,
(representing uncertain evidence) (Appendix I). We have also devised a scheme for computing
Dempster-Shafer belief functions in that model, using Assumption-Based Truth Maintenance
Systems (ATMS) and Incidence Calculus (Appendix I). -

As an alternative to the Dempster-Shafer theory, we have investigated another scheme of
handling partial models, based on the observation that facts and rules are usually communicated
with virtual certainty, without attaching to them numeric measures of belief. Qualitative
representations involve simplicity of elicitation, communication, encoding, and computation.
They suffer however from the ills of classical monotonic logics which preclude the representa-
ion of context-dependent information. In Appendix II we describe a system which retains the

context-dependent nature of probabilistic inferences, yet involves non-numeric propositions. In-
put knowledge is cast in statements with four levels of certainty: true, false, likely and unlikely.
However, unlike classical multivalued logics, the system retains the essential properties of pro-
babilistic inferences, such as conditionalization, independence and causality. This allow us to
manipulate evidence by logical means while maintaining the probabilistic semantics (hence the
plausibility) of the output statements, cast in the same 4-value vocabulary.

Appendix II contains examples of property inheritance relationships, and shows how the
inference scheme handles them satisfactorily. The scheme is ripe for applications involving ob-
ject recognition, but further study is required to identify what relationships are inherited across
spatial relationships. For example, only some of the properties of an object are inherited by its
parts and, vice versa, only few of the part's properties are inherited by the object as a whole.

We are currently studying another approach to handle the mixture of probabilistic and
categorical relationships for object recognition tasks, based on the maximum-entropy principle.
This approach attempts to complete the nodel and, unlike conventional methods of maximum
entropy, exploits the "almost categorical" nature of spatial constraints to extract a computational-
ly tractable calculus of property inheritance. I -
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2. LIST OF RESULTS

* An axiomatic system (called Graphoids) was developed, which provides a formal charac-
terization of informational dependencies and their graphical representations.

• Techniques were developed for learning causal structures from emprirical data.

* Relevance-based control strategies were developed to optimize the selection of tests and
to minimize the network activity during updating.

0 The interrelationships between the Bayesian and Dempster-Shafer approaches to uncer-
tainty were given formal definition in terms of provability conditions and constraint net-
works.

0 Probabilistic semantics was developed for a subset of default reasoning, leading to con-
sistency criteria, sound inferences and the qualitative management of causality.

* Sound and complete graphical procedures for identifying the set of parameters needed for
answering a given probabilistic query.

0 A proof that d-separation is the most complete graphical criterion for detecting condi-
tional independencies in influence diagrams.

These results are described in the following publications.
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APPENDIX H.
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Abstract

A new system of defeasible inference is presented. The system is made up of a body
of six rules which allow proofs to be constructed very much like in natural deduction
systems. Five of the rules are shown to possess a sound and clear probabilistic seman-
tics that guarantees the high probability of the conclusion given the high probability
of the premises. The sixth rule appeals to a notion of irrelevance; we explain both its
motivation and use.1

1 Motivation

Belief commitment and belief revision are two distinctive characteristics of common sense
reasoning which have so far resisted satisfactory formal accounts. Classical logic for in-
stance, cannot accommodate belief revision: new information can only add new theorems.
Probability theory, on the other hand, has difficulties in accommodating belief commit-
ment: propositions are believed only to a certain degree which dynamically changes with
the acquisition of new information.

Recent years have witnessed a renovated effort to enhance these formalisms in order to

overcome such limitations. Those working within the probabilistic framework have tried to

devise 'acceptance rules' to work on top of a body of probabilistic knowledge, as to create

a body of believed, though defeasible, set of propositions (e.g. [Levi 801). Those working

'This paper is a revised version of [Geffner el. al. 87].



within the logic framework have developed 'non- monotonic' inference systems [AI Journal
801 based on classical logic, in which old 'theorems' can be defeated by new 'axioms'.

In comparison, the probabilistic approach has enjoyed a significant advantage over
the logical approach. A body of probabilistic knowledge together with an acceptance rule
uniquely determines the conclusions that can be derived. Both the probabilistic knowledge
base and the acceptance rule can be modified so as to capture those conclusions that appear
reasonable. Non monotonic logics, on the other hand, have lacked such clear semantics.
Not only it has been difficult to tune the set of defeasible rules so as to 'entail' the desired
conclusions [see Hanks and McDermott 861, but it has even been difficult to characterize
what the conclusions sanctioned by a body of 'defaults' ought to be (see [Touretzky et al.

87], "A clash of intuitions ... ").

On the positive side, as noted by [Glymour et. al. 84] and [Loui 87a], the logical
approach has shown that a qualitative account of non-monotonic reasoning, which does not
require either 'acceptance rules' or the expense and precision of computing with numbers,
might be possible, and has even suggested ways in which such an account can be provided.

In this paper we attempt to show that it is possible to combine the best of both worlds.
We present a system of defeasible inference which operates very much like natural deduction
systems in logic and, yet, can be justified on probabilistic grounds. The resulting system is
closely related to the logic of conditionals developed by Adams [Adams 66], as we interpret
defaults of the form P -- Q as constraining the conditional probability of Q given P to
be infinitesimally close to one. On the other hand, the appeal to a notion of relevance in
our formulation bears a close relationship to those approaches which investigate defeasible
reasoning as resulting from the interaction of competing arguments (e.g. [Touretzky 84;
Poole 85; Loui 87b; Pollock 87]).

The, structure of the paper is as follows. In section 2 we define the core of the system,
discuss the need for providing an account of the notion of irrelevance, and present such
an account. In section 3 we illustrate the applicability of the system proposed by going
through an standard set of examples. We summarize the main contributions in section 4.

2 A System of Defeasible Inference

2.1 The Core

The logic we shall present will be referred as L and will be characterized by a set of rules of
inference, in the style of natural deduction systems. The goal of L is to sanction as theorems
the highly likely consequences that follow from a given context. A context F = EK is
defined by a background context K, which expresses generic knowledge relevant to the
domain of discourse, and an evidential set E, which expresses the particular facts which
characterize the particular situation of interest. A background context K, K = (L, D). is

2mmmmmmmmmm m m m lm mm m mmm mm m m m mm m m



built from a set of closed wffs L and a set D of defaults, represented by meta-linguistic
expressions of the form p -- q, where p and q are closed wffs. The evidential set E is given
by a collection of closed wffs. We use default schemas of the form P(x) -4 Q(x), where P
and Q are wffs with free variables among those of x = {x ...... , x,}, to represent the infinite
collection of defaults that results from substituting x by a vector a of ground terms.

The system of inference implicitly defines the set of conclusions h that follow from a
given context EA-. with K = (L, D). We write E Ik h to denote that sentence h is derivable
from context EK in L. Likewise, E, {f} h, abbreviated E, f 1k h, states that h is derivable
from the context that results from adding the sentence f to E. We shall use the notation
o(E) to refer the sentence that obtains by conjoining the sentences in E. The symbol -
stands for derivability in classical first order logic. The initial set of rules we are going to
consider is the following:

Rule 1 (Defaults) If f --+ h e D then f 1 h

Rule 2 (Logic theorems) If L U E I- h then E t. h

Rule 3 (Triangularity) If E ik f and E I h then E, f Ik h

Rule 4 (Bayes) If E Ik f and E. f 1k h then E K h

Rule 5 (Disjunction) If E, f I h and E, g I h then E, f V g k h

Rule 1 permits us to conclude the consequent of a default when its antecedent is all
that has been learned. Rule 2 states that theorems that logically follow from a set of
formulas can be concluded in any context containing those formulas. Rule 3 permits the
incorporation of an established conclusion to the current evidence set, without affecting
the status of any other derived conclusions. Rule 4 says that any conclusion that follows
from a context whose evidence set was augmented with a conclusion established in that
context, also follows from the original context alone. Finally, rule 5 permits reasoning by
cases.

Rules 2-5 can be shown to share the inferential power of the system of rules proposed by
Adams in [Adams 66J for deriving what he calls the probabilistic consequences of a given set
of conditionals. They also appear, in different form, in the logic of conditionals developed
by Stahnaker, Lewis and others during the seventies. Interestingly, in the context of non-
monotonic logics, Gabbay [Gabbay 85] has als- proposed a minimal set of rules which
includes rules 3 and 4 above.

We proceed now to investigate some of the properties of the system of defeasible infer-
ence defined by rules 1-5. Later on. we shall discuss some of its limitations as we enhance
the system with a sixth rule which attempts to capture the notion of irrelevance.

2See [Nute 841 for a review.
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2.1.1 Some Meta-Theorems

Theorem 1 (Logical Closure) If E h, E I h', and E, h, h' - h", then E 1k h".

By rule 3, we obtain E, h IK h'. From rule 2, we get E, h, h' 1K h". Applying rule 4 twice,
the theorem is proved.

Theorem 2 (Equivalent Contexts) If E IK h and q5(E) _ (E') then E' 1 h

Since E - o(E'), by applying rules 2 and 3 we get E, E' K h; which together with
E' - O(E) and rules 2 and 4, leads to E' K h.

Theorem 3 (Exceptions) If E tk h and E, f IK. -,h then E "f.

From E, f . -'h, we can obtain by theorem 1, E, f IK --h v -f. On the other hand, from
rule 2 we can conclude E, -,f K --h V -f. Combining these two results by means of rule
5 and theorem 2, we get E 3" -,h V --if and, therefore, E I -f by virtue of theorem 1 and
E Kh.

Some non-theorems:

E - f and f . h does not necessarily imply E K h
£ - h and E' K h does not necessarily imply E, E' 1 h

Note that the first non-theorem is clearly undesirable. If accepted, it would endow our
system with monotonic characteristics of classical logic, precluding exceptions like non-
flying birds, etc. The second one would incorrectly authorize to conclude for instance, that
John will be happy when married to both a Jane and Mary, on the grounds that he will
be happy when married to either one of them.

As we shall see later, the system of rules 1-5 defines an extremely conservative non-
monotonic logic. In fact, the inferences sanctioned by these rules do no involve any type
of assumptions regarding information absent from the background context. To illustrate
this fact, let K = (L, D) and K' = (L', D') denote two background contexts, such that
K < K', i.e. L C L' and D C D'. We have the following theorem:

Theorem 4 (K-monotonicity) If E - h and K < K' then E K, h.

This theorem follows easily by induction on the minimal length n of the derivation of
E k h. If n = 1, it means that h was derived from E in K either by rule 1 or by rule 2.
In either case it is easy to show that h can be derived from E in K'. Let us assume now
that h is derivable from E in K in n steps, n > 1, and that the theorem holds for all the
proofs with length m < n. Clearly the last step in the derivation must involve one of the
rules 3-5. In any case, the antecedents of such rule must be derivable in a number of steps
smaller than n and, therefore, by the inductive assumption, they are also derivable in K',
from which it follows that, using the same rule, h is also derivable from E in K'.

Finally, rules 1-5 can be shown to be probabilistically sound. That is, if we interpret
defaults of the form p --- q as constraining the conditional probability of q given p to be
infinitesimally close to 1, we can show that each rule preserves the interpretation which

4



assigns a conditional probability P(hIE, L) infinitesimally closed to 1 to expressions of the
form E lk h. We omit the proof here, and refer the interested reader to [Adams 66] and
[Pearl et. al. 88].

We now turn our attention to an example that shows how the body of rules introduced
so far can account for simple patterns of non-monotonic reasoniug.

2.2 Example

Example 1. Let us consider the background context K = (L, D) depicted in fig. 1 with
L = {Vz. penguin(x) D bird(x)}, D = {penguin(z) -- -'flies(z), bird(z) --+ flies(x)}.

bird i flies

penguin

Figure 1: The penguin triangle

Concluding that 'Tim does not fly' in context K knowing that 'Tim is a penguin'
amounts to proving penguin(Tim) K--f lies(Tim). The proof gets reduced to a single
application of rule 1, since penguin(Tim) - -,flies(Tim) e D.

Proving penguin(Tim), bird(Tim) lx -,flies(Tim) is slightly different since a new fact.
bird(Tim), needs to be assimilated. The proof goes as follows: 3

1. penguin(Tim) lx K-flies(Tim) rule 1
2. penguin(Tim) bird(Tim) rule 2
3. penguin(Tim), bird(Tim) 1 -,flies(Tim) rule 3; 1, 2.

Note that the new piece of information available, bird(Tim), does not alter the conse-
quences that followed from the former context, as such new piece of information can be
shown to be itself one of its consequences.

It is important to note, that the proper handling of this simple hierarchy in the logic,
without the need to explicitly encode exceptions (like that 'penguins' are 'abnormal' birds
with respect to flying), arises not only from the interpretation of defaults embodied in the
rules, but also from the distinction made in L between the formulas in the background
context K from those in the evidential set E.

To illustrate this last point, let us consider the new context F'

'Proofs appear as a sequence of lines. Each formula in a proof has associated hnth a number and a
justification. The latter indicates the rule used in deriving the formula, as well as the coLiditions that make
the rule applicable.



r' = {penguin(Tim),Vx.penguin(x) D bird(x)}K',

with K' = (L', D'), L'= {} and

D' = {penguin(x) -+ -flies(), bird(x) -- flies(z)},

which results from 1 by moving the class inclusion PB = Vx.penguin(x) D bird(x) from
the background context to the evidential set. We find that, even though both 1L and r'
comprise the same wffs and defaults, the formula -"fliej(Tim), derivable in context rj is
not derivable in IF'. That is, the -preference' for the conclusion that penguins do not fly in
spite of being birds, is not explained in our framework solely in terms of class specificity,
but also in terms of the knowledge presumed by the default rules.

While the default penguin(Tim) -- -f lies(Tim) is interpreted in K as asserting a con-
ditional probability PK(-'flies(Tim)Ipenguin(Tim), PB, L') infinitesimally close to one;
the same default is interpreted in K' as asserting the rather different conditional probabil-
ity PK',(-flies(Tim)jplnguin(Tim), L') to be infinitesimally close to one. In order words,
in K, the default 'penguins don't fly' already presumes penguins to be birds. In K' in-
stead, the latter fact is taken to represent a new piece of knowledge, independent of the
background knowledge used to assume that most penguins do not fly, and which happens
to support the opposite conclusion.

This example also shows that formulas cannot be freely moved between the background
context and the evidence set without altering the meaning of the theory they define.
Propositions in a background context K represent generic knowledge presumed by all
the defaults in K. Unlike formulas in the evidence set, they do not represent pieces of
evidence that need to be assimilated in order to reach a conclusion. That is actually the
proof theoretic significance of rule 1.

2.3 Irrelevance

The common interpretation of defaults of the type a - b is in the form of a disposition
to believe b when a is believed and no reason for not doing so is apparent. This reading
has two implications we shall be concerned with: one which requires conclusions to be
retractable in the light of new refuting evidence; the second which requires conclusions to
persist in the light of new but irrelevant evidence. Rules 1-5 excel at the first requirement:
their soundness prevents preserving a conclusion in a context in which its high probability
cannot be guaranteed. In example 1 we have shown, for instance, that whii birds can
be assumed to fly, birds known to be penguins cannot. On the other hand, it is easy to
discover that the same body of rules fail miserably in the second aspect. For instance,
given a background context K = (L. D) with L = {} and D = {a -* b}, rule 1 permits the
conclusion a Ik b. However, if a new piece of information e, that bears no relation to b is
discovered, rules 1-5 fail to prove a, e ik b and, therefore, to maintain the belief in b in the
new context.
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This 'conservatism' arises as no surprise from a set of rules which insist on probabilistic
soundness: while there is no reason to believe that the presence of e in the context {alK
could render b less likely, such a situation would be perfectly consistent and, since a sound
conclusion must hold in every probabilistic model of K, a, e § b is not sound and, therefore,
not provable from rules 1-5. 4 Furthermore, closer inspection of rules 1-5 reveals that the
only type of evidence that can be assimilated without affecting the status of a derived
conclusion is evidence which is subsumed by older information (like in example 1, in which
we 'learn' that Tim is a bird after knowing he is a penguin).

Clearly this is insufficient. If we want the system to exhibit reasonable inferences, like
the one illustrated by the example above, we need to restrict the family of probabilistic
models relative to which a given conclusion must be checked for soundness. We want those
models to embed the common sense assumption that no conclusion should be retracted
when there is no apparent reason for doing so.

Our attempt will be precisely to provide a formal account of what these reasons are,
and to define from it the conditions under which a default a -- b can be assumed to hold
in a given context EK. In probabilistic terms, to specify the conditions under which b can
be assumed to be conditionally independent on E given a and K.

The idea we shall pursue is simple. We shall essentially assume that E provides a
reason for a sentence h. an argument in our terminology5 , when there is a proof for E h
that is logically consistent with what we know. That is, in order to verify whether E might
support h in K = (L. D , we assume a given subset of defaults S, S C D, to hold, and
test whether, under such conditions, there is a derivation of h from E and L.

Formally, we say that there is an argument for h with support S from a set E of wffs.
iff E l h is derivable according to the following rules:

Rule A.1 If f -- h e S then E. f ii h. for any set E of sentences

Rule A.2 If E - h then E Ihg h

Rule A.3 If E Ih- f and E. f l- h t en E lFs h

Rule A.4 IfE, f lIIh and E. g h thenE, fVglgh

Note that except for rule A.1. which relaxes rule 1 above, the rest of the rules precisely

correspond to rules 2.4 & 5 above. Furthermore. the rule which would correspond to rule
3 above turns out to be redundant: unlike provability in L, -arguability' - the provability

relation associated with the symbol "I' - is monotonic. That is, we can show that if

4Another way of looking at this example is by considering the background context K' = (L'. D') > K =

(L, D). with L' = {} and D' = {a - b, a A e - - --b}. Clearly K' does not permit the conclusion 6 from a

and e. However, if K sanct ,ed such a conclusion, so should K', in light of the K-monotonicity of the rules

(Theorem 4).
'As borrowed from LLoui S7b]. [Pollock S71 and others.



E 1hs h holds, so does E, E' II g h.

Now, in order to relate the arguability of a sentence h with the derivability of E, L h,
for some S C D, we need to guarantee that we have not incurred any inconsistency by
simultaneously assuming all the defaults in S to hold. We say that a support S is consistent
in context EK, if for no sentence f, we have E, L l- f A -f. In such case, if we can prove
E. L 1 s h for a sentence h, we say that h is arguable in context E-. 6

For instance, figure 2 expresses the background context K = (L, D), with

L = {Vx. AP(x) D P(x)..Vx.. RB(x) D B(z)}

and

D = {P(x) --+ B(x), P(x) -- -'F(x),B(x) - F(x)},

where we might wish to interpret P, B, AP, RB and F as standing for the predi-
cates penguin, bird, arctic penguin, red bird and flies, respectively.' Given that Tim
is a penguin, P(Tim), we obtain arguments supporting both -F(Tim) and F(Tim).

Arguments supporting the former correspond to the path P 74/ F in the figure, and
require a (minimal) support S = {P(Tim) --+ -F(Tim)}; arguments for F(Tim) on
the other hand, correspond to the path P --- B -+ F, and have support S' =

{P(Ti m) --. B(Tim), B(Tirn) --- F(Tim)}.

P

AP

Figure 2: Paths and Arguments

We are interested in determining whether a default, say P(Tim) -- -F(Tim).
can be assumed to hold once we take into account an additional body of evidence
E, or what amounts the same, to determine whether to authorize the conclusion
E. P(Tim) k ',F(Tim).

Note that requiring the non-arguability of the negation of the default consequent.

F(Tim), in the context {E u {P(Tim)}K,, is too strong a condition. For instance, con-

'This notion of arguability can be compared to the notion of extension in Reiter's default logic [Reiter
So]. It is not difficult to show that the existence of an extension that sanctions a given proposition makes
the proposition arguable. It does not work the other way though. A proposition might be arguable and still
not be present in any extension. This is because Reiter's logic does not handle reasoning by case-

7 We have encoded 'penguins are birds' as a default rather than as a class inclusion, simply to make the

discussion below more illustrative.
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sider E = {AP(Tim)}. Clearly we have AP(Tim), P(Tim) IR F(Tim), with S' as defined
above, as, in particular, we also have P(Tim) Ig, F(Tim). Still, there is no question that,
with the information available, the conclusion -F(Tim) should be preserved.

We shall base the criterion for determining the persistence of a given default consequlent
upon learning a body of evidence E' not on whether E' renders its negation arguable, but

on whether E' provides additional support to it. This latter notion is defined as follows.

We say that the body of evidence E' provides additional support to a sentence h in

context EK, K = (L, D), if there is a consistent support S, S C D, in {E u E'}K, such
that E', E, L IIs- h and E, L Vs h. If E' does not provide additional support to h in EK, we
say that E' is irrelevant to h in such context, and write IK(h; E'IE).

In the example above for instance, we have that E' = {AP(Tim)} does not provide

additional support to either F(Tim) or -"F(Tim) in context {P(Tim)}K, because in order
to render either proposition arguable, E' requires a support including either the default

B(Tim) --+ F(Tim), or the default P(Tim) - -'F(Tim) which, in turn, render F(Tim)

and -'F(Tim), respectively, arguable, in {P(Tim)}K.

Note that in terms of the graphs we have been using to represent the relationships

embodied in a given background context, for a body of evidence E' to provide additional
support to a proposition h in a context EK, it must be usually the case that there is

some type of path connecting formulas in E' to h, which is not mediated by E. Such

graphical interpretation correctly suggests for instance, that while AP(Tim) does not

provide additional support to F(Tim) in context {P(Tim)}K, the sentence RB(Tirn)

does. We shall often find useful to appeal to such interpretation when we consider some

examples below.

We are ready now to provide a reasonable sufficient condition under which a given de-

fault a --+ b can be assumed to authorize inferring b from a, in the presence of an additional
body of evidence E:

Rule 6' (Explicit Irrelevance) If a -* b E D and IK(-'b; El{a}), then a, E I b.

This condition attempts to capture the intuition expressed above by which a de-

fault a -- b is understood as providing a reason for concluding b from a as long .s

no reason for not doing so is apparent. Such new rule permits to derive for instance

P(Tim), AP(Tim) -'F(Tim) and, therefore, by rules 2 and 4, AP(Tim) 1k -F(Tim).

Note that neither conclusion was derivable by means of rules 1-5 alone.

Still, rule 6' is not strong enough. While we can conclude for instance, that penguins,

arctic penguins and even 'penguin birds' are likely not to fly, we are still unable to conclude

that a penguin who happens to be a red bird is also likely not to fly. The reason is

that, unlike B(Tim) or AP(Tim), RB(Tim) cannot be shown either to be derivable from

P(Tim) or to be irrelevant to F(Tim) in context {P(Tim)}K. However, considering the

argument by which RB(Tim) provides additional support to F(Tim), we see that it is

not the 'redness' of Tim that casts doubt about its inability to fly, but its 'birdness'; even

9



when 'penguin birds' can be shown not to fly. Rule 6 below, strengthens and generalizes
rule 6', precluding a body of evidence E to defeat a default a --* b on the grounds of a
property f known to be irrelevant to such a default:

Rule 6 (Implicit Irrelevance)
For any default a -- b in D, formula f and body of evidence E,

Ifa f , a,E tf and IK(-,b;El{a,f}), then a,E 1b.

Rule 6' is a special case of rule 6 in which f = true. Note that for non-tautological
formulas rule 6 imposes the additional requirement that a, E k f must hold; otherwise, in
particular, we could choose f to be b itself, and thus, incorrectly sanction a, E lk b for any

body of evidence E consistent with L U {a, b}.

In the example depicted in fig. 2, we can now show P(Tim), RB(Tim) Ik -F(Tim) by
invoking rule 6 with f = B(Tim).

We shall illustrate next how the interpretation of defaults embodied by the system of

rules 1-6 usually leads to 'intuitive' conclusions, by analyzing in detail several examples
reported in the AI literature.

3 Examples

As argued above, we encode generic knowledge of the domain of interest in K and include
in E properties and relations among individuals. Furthermore, as in each example below
we shall be dealing with single place predicates and a single individual, say a, we will find

convenient to abbreviate, the literal [-,]p(a), for any property p, simply by [-']p. Likewise,
we will find useful to label default schemas P(z) -+ Q(z) with a name, say d1 , and use

such label to refer to the default of interest; P(a) --+ Q(a) in this case. Furthermore, when

no ambiguity results, we eliminate unnecessary brackets, as in IK(a; {b}l{c}), which we

abbreviate as Ih-(a; bic).

Example 2. Let us consider the background context K = (L, D), with L - {} and

D = { d, :u_student(z) -- adult(z), d 2 : adult(x) -- work(x),

d3 u.tudent(z) - -work(x), d4 : adult(z) A under22(z) --+ u-student(z)}.

adult-- work

under_22 /

u_student

Figure 3: Adults under 22 usually do not work
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We want to show that if all that we know about, say Tom, is that he is an adult under
22 years old, then, with high likelihood, we can conclude that Tom does not work. The
proof proceeds as follows:8

1. adult, under.22 K u..student rule 1; d4
2. u.student, under_22 .-work rule 6'; d3 , IK(-"work; under_221u.student)
3. u-student,under.22 Kgadult rule 6'; d1 , IK(-'adult; under_221u -student)
4. u.student, under-22, adult K -"work rule 3; 3, 2
5. adult, under.22 -'work rule 4; 4, 1.

Note, for instance, that irrelevance of under_22 to -'work in context {u..tudent}K,
in line 2, follows from the fact that any support that renders -,work arguable in context
{ u-student, under_22}K must include the default d3 , thus, rendering -work arguable also
in context {u.student}K. In more graphical terms, u.tudent blocks the single path that
leads from nodes in {u.student, under_22} to "-work.

It is interesting to note that from the same background knowledge, we can also derive
that an arbitrary chosen adult is likely not to be a university student:

1. u..student K -'work rule 1; d3

2. u.student l,- adult rule 1; d1
3. ustudent, adult -'work rule 3; 2, 1
4. adult I.work rule 1; d2

5. adult -'u_student theorem 3; 3, 4.

Example 3.[Sandewal 86, Touretzky et. al. 87]. Let K = (L, D) be given as:

L = {Vx. royalelephant(x) D elephant(x), Vx. africanelephant(z) D elephant(x)},

D = { di : elephant(z) --* gray(x), d2 : royal-elephant(x) --. -gray(x)}.

elephant P- gray

african elephant royal_elephant

Figure 4: A royal african elephant is not gray

We want to show that a royal african elephant is likely to be not gray:

1. royal-elephant K elephant rule 2

2. royal-elephant, african-elephant k elephant rule 2
3. royal-elephant, african-elephant K -'gray rule 6; d 2, 1, 2, IK(.)

The last step uses the fact IK(-'gray; africanl{royal, elephant}), which can be under-

stood as carrying the implicit assumption that the default 'most royal elephants are not

SWe implicitly use the results of theorems 1-3 to freely change the order of conjuncts both to the left and

to to right of the provability symbol' .'.
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gray' also holds among african elephants. We assume that if this were not the case, the
default set D in the background context would be modified accordingly, either by explicitly
asserting that most african elephant are gray, or by qualifying the default that staies the
most royal elephants are not gray. In either case, the conclusion we have derived in this
context would be blocked.

Example 4. (Touretzky et. al. 871. Let us consider now K = (L,D), with:

L 11

D = { di :A(z) --x B(x), d2 A(x) - -'G(z), d3 :B(x) - G(x),

d4 :B(x) -- C(x), d5 :C(x) -* F(z), d6 :G(z) --* -F(x)

F

C G

A

Figure 5: A's are F's

The goal here is to derive that A's are F's. The intuition is to show that both C and
-'G follow from A, and that the latter blocks A from -,F. The proof proceeds as follows:

1. C, -G, A . F rule 6'; d5, IK(-'F; {-'G,A}IC)
2. A .-,G rule 1; d2
3. A KB rule 1; d1
4. B, A . C rule 6'; d4, IK(C; AIB)
5. A C rule 4; 4, 3
6. A I C A -G theorem 1; 2, 5
7. A K F rule 4; 1, 6.

Note that IK(-'F; {-'G, A}JC) holds due to the fact that the presence of -'G rules out
any support which entails G.

Example 5. We consider now K = (L,D), with L = {}, and D
{quaker(x) --+ pacifist(x), republican(z) --* -pacifist(z)}.

Given that Nixon is both a quaker and a republican, no conclusion can be drawn

regarding his pacifism. In our opinion, drawing no conclusion is, in this case, preferred

to drawing two conflicting extensions, as in normal default theories [Reiter 80]. It clearly

indicates that the knowledge embedded in K is not sufficient to integrate the available

pieces of evidence to arrive at a conclusion. Enhancing the background context to include
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another default, like quakers who also are republicans are still pacifists, would solve the
ambiguity without introducing any inconsistencies.

Example 6: (M. Ginsberg) Let us consider the background context K = (L, D), with:

L 11{

D = { di quaker(x) --+ dove(z), d2 republican(x) --+ hawk(z),

d3 dove(x) -- -hawk(x), d4 : hawk(z) -+ -.dove(z),

ds :dove(z) -* pmotivated(x), d6 : hawk(x) --+ p.motivated(x)}

p_motivated

dove A hawk

t t
quaker republican

Figure 6: Is Nixon politically motivated ?

The conclusion that Nixon is politically motivated, given that he is both a quaker and
a republican, would follow if we could derive that he is either a hawk or a dove. However
the latter disjunction does not follow from rules 1-6, since D does not provide sufficient
reasons for believing either that quakers who are also republicans are still likely to be
doves, or that republicans who are also quakers are still likely to be hawks. 9

Example 7. Let us finally consider a background context K = (L, D), with L = { } and
D = {A(z) -- C(x), A(x) --+ B(z), A(z) A C(x) -+ -B(x)}. This context turns out to be
inconsistent. D entitles us to conclude both B and C from A, and -B from A and C, in
contradiction with rule 3, which permits to maintain conclusions derived in a context EK,
in the enhanced context {E U {f}}K, when f is itself one of the 'expected' consequences
of EK. Reiter's default logic on the other hand, would not detect any inconsistency in
such knowledge base. Note that in our framework, a context comprising the sets L' = { },
D' = {A(z) --+ B(x)} and E' = {A(a), -B(a)} is perfectly consistent.

4 Related Work

As noted in [Reiter et. al. 81], the logic for default reasoning proposed in [Reiter 80]
requires exceptions to be explicitly stated in order to prevent the multiplicity of spurious

9 If this lack of commitment seems counter-intuitive it is because the information contained in the fact
that 'typically republicans are politically motivated' (independently of whether they are hawks or doves)
has not been encoded in the background context. In fact, if we replace 'politically motivated' by 'having an
extreme position on defense issues', not drawing a conclusion seems to be the most reasonable choice.
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extensions. Recently, several novel systems of defeasible inference have been proposed,
motivated by the intuition that it should be possible to filter the effect of spurious exten-
sions without the need to make exceptions explicit. Among them, the system closest in
spirit to the scheme proposed in this paper is the system of defeasible inference proposed
by Loui. 10

Loui's system [Loui 87b] is made up of a set of rules to evaluate arguments. He defines a
set of (syntactic) argument attributes (like 'has more evidence', 'is more specific', etc.), and
a set of rules, which allow the comparison, evaluation, and selection of arguments. This
set of rules seems to implicitly embed most of the inference rules that define our system,
and can be mostly justified in terms of them. Still, it is possible to find some differences.
One such difference is that Loui's system is not (logically) closed. It is possible to believe
propositions A and B, and still fail to believe A A B [Loui 87b]. In our scheme, the closure
of the propositions believed follows from theorems 1 and 2. In particular, if the arguments
for A and B in a given theory are completely symmetric, and A A B does not follow for
some reason (like conflicting evidence), then neither A nor B will follow.

Another difference arises due to the absolute preference given by his system to argu-
ments based on 'more evidence'. As the following example shows, this criterion might
lead to counter-intuitive results. Consider the context K = (L, D) with L = {} and D =

{A , B. C -_ -B, A A F -- C); Loui's system would conclude -B, given the evidence

E = {A, F}, merely because the evidence supporting the argument A --+ B, constitutes a
proper subset of the evidence supporting the competing argument A A F --+ C -# -B. Yet.
if proposition C, whose truth was presumed in the argument supporting -B, were learned,
Loui's system would retract its belief in -B, since C renders both F and A irrelevant to
-,B and, therefore, neither the argument which supports B, nor the argument that sup-
ports -'B, could be said to be based on 'more evidence' than the other. Our system, as

expected, will draw no conclusion in either case, since the joint influence of both A and C
on B (or -B) cannot be derived from the given context.

The system reported by Touretzky in [Touretzky 84] was motivated by the goal of

providing a semantics for inheritance hierarchies with exceptions. He argues that there is
a natural ordering of defaults in inheritance hierarchies that can be used to filter spuri-
ous extensions. In this way, his system succeeds in capturing inferences that seem to be

reasonable, but which escape unaided, fixed-point semantic systems like Reiter's. Still,

Toureztky's system can be regarded more as a refinement of Reiter's logic than as a de-
parture from it (see [Etherington 87]). As such, it still requires testing, outside the 'logic'.
whether a given proposition holds in every (remaining) extension. Moreover, requirements
of acycicity are at the heart of the definition of the inferential distance principle, restrict-

ing, therefore, its range of applicability. It is interesting to note that rules 3 and 6 seem

to convey ideas very similar to Touretzky's inferential distance. Still, while the inferential

'0 1n [Delgrande 87], Delgrande builds a logic of defaults based on a first order conditional logic which

renders a core of rules similar to our rules 1-5, except for the fact that he makes defalt't part of the

object language. Our systems differ mainly in the semantics: ours is probabilistic, his is based on possibl,

worlds. This difference motivates a different set of intuitions and proposal for approaching the problem

characterizing irrelevance.
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distance principle is used to discard 'inadmissible' arguments, the rules presented in section
2 are used to prevent them from ever evolving to a ratified conclusion.

In [Poole 85], Poole has proposed another mechanism for dealing with the problem of
multiple, spurious, answers that arises in Reiter's default logic. This mechanism consists
of comparing the 'specificity' of the knowledge embedded in the arguments supporting
contradictory conclusions. An argument shown to be strictly 'more general' than another
argument, can be discarded. This criterion seems in fact very close to Touretzky's in-
ferential distance. Still, they seem to differ in an important aspect. Unlike Touretzky,
Poole compares the specificity of the arguments isolated from the rest of the knowledge
base. It seems that this might lead to undesirable results. For instance, in example 2

(fig. 3), none of the arguments supporting the conclusion that Tom works, or that Tom
does not work, can be determined to be more specific if the default that states that most
students are adults- which does not take part in the competing arguments- is ignored.
Additionally. like Reiter's and Toureztky's, Poole's system seems to also require to testing,
outside the 'logic', whether a proposition holds in every (remaining) extension in order for
the proposition to be accepted.

5 Summary

The main contribution of the proposed framework for defeasible inference is the emergence
of a more precise. proof-theoretic and semantic account of defaults. A default P --+ Q, in
a background context K, represents a clear cut constraint on states of affairs, stating that.
if P is all that has been learned, then Q can be concluded. We appealed to probability
theory to uncover the logic that governs this type of 'context dependent implications'.

Additionally we have introduced a notion of irrelevance as a set of sufficient conditions
under which belief in the consequent of a given default can be preserved upon acquiring

new information. This notion is used very much like frame axioms are used in AI: we
assume defaults to hold upon acquiring a new piece of evidence E, as long as E does not
provide a reason for not doing so.

The scheme proposed here avoids the problem of multiple, spurious extensions that
normally arises in default logics. Moreover, we do not need to explicitly consider all the
extensions in order to prove that a given proposition follows from a given theory. Proofs
in our system proceed 'inside the logic', and look very much like proofs constructed in

natural deduction systems in logic.

The system is also clean: the only appeal to 'provability' in the inferential machinery is

to determine when a proposition can be safely assumed to be irrelevant to another propo-

sition in a given context. But, in contrast to most non-monotonic logics, the definition of

non-monotonic provability is not circular. The irrelevance predicate used for constructing

proofs can be inferred syntactically in terms of arguments only.
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